Command Palette

Search for a command to run...

Kelas 11mathAljabar

Apakah mungkin grafik fungsi rasional f(x)=k/(ax+b) dengan

Pertanyaan

Apakah mungkin grafik fungsi rasional f(x)=k/(ax+b) dengan k merupakan konstanta, (ax+b)=/=0, dan g(x)=(cx+d)/(px+q) dengan (px+q)=/=0 memiliki satu asimtot?

Solusi

Verified

Ya, kedua fungsi rasional tersebut masing-masing memiliki satu asimtot tegak dan satu asimtot datar.

Pembahasan

Ya, grafik fungsi rasional $f(x)=k/(ax+b)$ dengan $k$ merupakan konstanta, $(ax+b) \ne 0$, dan $g(x)=(cx+d)/(px+q)$ dengan $(px+q) \ne 0$ dapat memiliki satu asimtot, bahkan keduanya memiliki satu asimtot tegak dan satu asimtot datar. Mari kita analisis masing-masing fungsi: 1. Fungsi $f(x) = k/(ax+b)$: * Asimtot tegak: Terjadi ketika penyebut bernilai nol, yaitu $ax+b = 0$, sehingga $x = -b/a$. Fungsi ini memiliki satu asimtot tegak. * Asimtot datar: Karena derajat pembilang (konstanta, derajat 0) lebih kecil dari derajat penyebut (derajat 1), maka asimtot datarnya adalah $y = 0$. * Jadi, fungsi $f(x)$ memiliki satu asimtot tegak dan satu asimtot datar. 2. Fungsi $g(x) = (cx+d)/(px+q)$: * Asimtot tegak: Terjadi ketika penyebut bernilai nol, yaitu $px+q = 0$, sehingga $x = -q/p$. Fungsi ini memiliki satu asimtot tegak. * Asimtot datar: Karena derajat pembilang (derajat 1) sama dengan derajat penyebut (derajat 1), maka asimtot datarnya adalah rasio koefisien pangkat tertinggi, yaitu $y = c/p$. * Jadi, fungsi $g(x)$ juga memiliki satu asimtot tegak dan satu asimtot datar. Kedua fungsi tersebut masing-masing memiliki satu asimtot tegak dan satu asimtot datar. Pertanyaannya adalah apakah "memiliki satu asimtot?". Jika yang dimaksud adalah memiliki *tepat* satu asimtot secara keseluruhan (baik tegak maupun datar), maka jawabannya tidak. Namun, jika yang dimaksud adalah memiliki minimal satu jenis asimtot (misalnya, hanya asimtot tegak atau hanya asimtot datar), maka ya, keduanya memiliki setidaknya satu jenis asimtot. Dalam konteks umum, ketika ditanya apakah suatu fungsi rasional memiliki asimtot, biasanya merujuk pada keberadaan asimtot tegak atau datar. Karena kedua fungsi tersebut memiliki setidaknya satu asimtot tegak dan satu asimtot datar, maka mungkin saja mereka memiliki satu asimtot (misalnya, fokus pada salah satu jenis asimtot saja). Namun, jika kita melihat secara keseluruhan, kedua fungsi tersebut memiliki DUA asimtot (satu tegak dan satu datar), kecuali dalam kasus-kasus khusus yang membuat salah satunya tidak terdefinisi atau menjadi fungsi konstan. Namun, jika pertanyaannya adalah apakah mungkin *memiliki tepat satu asimtot* (baik tegak maupun datar), maka jawabannya adalah tidak untuk kedua bentuk umum ini, karena keduanya memiliki struktur yang menjamin adanya kedua jenis asimtot tersebut (selama koefisiennya tidak nol dan tidak terjadi pembagian nol yang menghasilkan bentuk tak tentu yang bisa disederhanakan menjadi fungsi linier). Jika kita menginterpretasikan pertanyaan sebagai "apakah mungkin memiliki satu asimtot tegak DAN satu asimtot datar?

Buka akses pembahasan jawaban

Topik: Fungsi Rasional
Section: Asimtot Fungsi Rasional

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...