Kelas 10Kelas 11Kelas 12mathTrigonometri
cos(x+y) cos(x-y)=. . . .
Pertanyaan
Sederhanakan bentuk trigonometri cos(x+y) cos(x-y).
Solusi
Verified
cos^2(x) - sin^2(y)
Pembahasan
Untuk menjawab soal ini, kita dapat menggunakan identitas trigonometri: cos(x+y) = cos(x)cos(y) - sin(x)sin(y) cos(x-y) = cos(x)cos(y) + sin(x)sin(y) Maka, cos(x+y) cos(x-y) = (cos(x)cos(y) - sin(x)sin(y))(cos(x)cos(y) + sin(x)sin(y)) Ini adalah bentuk (a-b)(a+b) = a^2 - b^2, dengan a = cos(x)cos(y) dan b = sin(x)sin(y). Jadi, cos(x+y) cos(x-y) = (cos(x)cos(y))^2 - (sin(x)sin(y))^2 = cos^2(x)cos^2(y) - sin^2(x)sin^2(y) Kita juga bisa menyederhanakannya lebih lanjut menggunakan identitas sin^2(x) + cos^2(x) = 1. cos^2(x)cos^2(y) - sin^2(x)sin^2(y) = cos^2(x)(1-sin^2(y)) - (1-cos^2(x))sin^2(y) = cos^2(x) - cos^2(x)sin^2(y) - sin^2(y) + cos^2(x)sin^2(y) = cos^2(x) - sin^2(y) Atau, bisa juga diubah menjadi: cos^2(x)cos^2(y) - sin^2(x)sin^2(y) = (1-sin^2(x))cos^2(y) - sin^2(x)(1-cos^2(y)) = cos^2(y) - sin^2(x)cos^2(y) - sin^2(x) + sin^2(x)cos^2(y) = cos^2(y) - sin^2(x) Jadi, cos(x+y) cos(x-y) = cos^2(x) - sin^2(y) = cos^2(y) - sin^2(x).
Buka akses pembahasan jawaban
Topik: Identitas Trigonometri
Section: Rumus Jumlah Dan Selisih Trigonometri
Apakah jawaban ini membantu?