Command Palette

Search for a command to run...

Kelas 7Kelas 8Kelas 9mathHimpunan

Diberikan S={1,2,3,4,5,6,7,8,9,10} A= {1,2,3,4,5} B=

Pertanyaan

Diberikan S={1,2,3,4,5,6,7,8,9,10}, A={1,2,3,4,5}, B={4,5,6,7,8}, C={3,5,6,9}. Tentukan a. A^c ∪ (B∩C), b. (A∩B) ∩ C^c, c. (B-C) ∩ A.

Solusi

Verified

a. {5, 6, 7, 8, 9, 10}, b. {4}, c. {4}

Pembahasan

Diberikan: S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} A = {1, 2, 3, 4, 5} B = {4, 5, 6, 7, 8} C = {3, 5, 6, 9} Kita akan menentukan: a. A^c ∪ (B∩C) Pertama, cari A^c (komplemen A terhadap S). A^c = S - A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} - {1, 2, 3, 4, 5} A^c = {6, 7, 8, 9, 10} Kedua, cari B∩C (irisan B dan C). B∩C = {4, 5, 6, 7, 8} ∩ {3, 5, 6, 9} B∩C = {5, 6} Ketiga, cari A^c ∪ (B∩C) (gabungan A^c dan B∩C). A^c ∪ (B∩C) = {6, 7, 8, 9, 10} ∪ {5, 6} A^c ∪ (B∩C) = {5, 6, 7, 8, 9, 10} b. (A∩B) ∩ C^c Pertama, cari A∩B (irisan A dan B). A∩B = {1, 2, 3, 4, 5} ∩ {4, 5, 6, 7, 8} A∩B = {4, 5} Kedua, cari C^c (komplemen C terhadap S). C^c = S - C = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} - {3, 5, 6, 9} C^c = {1, 2, 4, 7, 8, 10} Ketiga, cari (A∩B) ∩ C^c (irisan A∩B dan C^c). (A∩B) ∩ C^c = {4, 5} ∩ {1, 2, 4, 7, 8, 10} (A∩B) ∩ C^c = {4} c. (B-C) ∩ A Pertama, cari B-C (selisih B dan C). B-C = {4, 5, 6, 7, 8} - {3, 5, 6, 9} B-C = {4, 7, 8} Kedua, cari (B-C) ∩ A (irisan B-C dan A). (B-C) ∩ A = {4, 7, 8} ∩ {1, 2, 3, 4, 5} (B-C) ∩ A = {4} Hasil: a. A^c ∪ (B∩C) = {5, 6, 7, 8, 9, 10} b. (A∩B) ∩ C^c = {4} c. (B-C) ∩ A = {4}

Buka akses pembahasan jawaban

Topik: Operasi Himpunan
Section: Komplemen Irisan Gabungan Selisih Himpunan

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...