Kelas 11Kelas 10mathAljabar
Diketahui sistem persamaan linear x+y-z=-3 x+2y+2z=7
Pertanyaan
Diketahui sistem persamaan linear: x+y-z=-3 x+2y+2z=7 2x+y+z=4 Berapakah nilai dari x+y+z?
Solusi
Verified
11/3
Pembahasan
Untuk menyelesaikan sistem persamaan linear ini, kita dapat menggunakan metode substitusi atau eliminasi. Sistem persamaannya adalah: 1) x + y - z = -3 2) x + 2y + 2z = 7 3) 2x + y + z = 4 Kita ingin mencari nilai x + y + z. Salah satu cara cepat adalah dengan mencoba menjumlahkan ketiga persamaan tersebut: (x + y - z) + (x + 2y + 2z) + (2x + y + z) = -3 + 7 + 4 (x + x + 2x) + (y + 2y + y) + (-z + 2z + z) = 8 4x + 4y + 2z = 8 Persamaan ini belum langsung memberikan nilai x+y+z. Mari kita coba metode eliminasi untuk mencari nilai x, y, dan z secara terpisah. Kurangkan persamaan (1) dari persamaan (2): (x + 2y + 2z) - (x + y - z) = 7 - (-3) y + 3z = 10 (Persamaan 4) Kalikan persamaan (1) dengan 2, lalu kurangkan dari persamaan (3): 2*(x + y - z) = 2*(-3) => 2x + 2y - 2z = -6 (2x + y + z) - (2x + 2y - 2z) = 4 - (-6) -y + 3z = 10 (Persamaan 5) Sekarang kita punya sistem baru dengan Persamaan (4) dan (5): 4) y + 3z = 10 5) -y + 3z = 10 Jumlahkan Persamaan (4) dan (5): (y + 3z) + (-y + 3z) = 10 + 10 6z = 20 z = 20 / 6 = 10 / 3 Substitusikan nilai z ke Persamaan (4): y + 3*(10/3) = 10 y + 10 = 10 y = 0 Substitusikan nilai y dan z ke Persamaan (1): x + 0 - (10/3) = -3 x = -3 + 10/3 x = -9/3 + 10/3 x = 1/3 Sekarang kita hitung x + y + z: x + y + z = (1/3) + 0 + (10/3) = 11/3 Jadi, nilai dari x + y + z adalah 11/3.
Topik: Sistem Persamaan Linear Tiga Variabel
Section: Penyelesaian Spltv
Apakah jawaban ini membantu?