Command Palette

Search for a command to run...

Kelas 12Kelas 11mathFungsi

Fungsi f: R -> R dan g: R -> R dirumuskan dengan

Pertanyaan

Fungsi f: R -> R dan g: R -> R dirumuskan dengan f(x)=(x-1)/x, x =/= 0 dan g(x)=x+3 . a. Tentukan (f o g)^(-1)(x), (g o f)^(-1)(x), (f o f)^(-1)(x), dan (g o g)^(-1)(x) b. Hitung (f o g)(5), (g o f)^(-1)(5), (f o f)^(-1)(5), dan (g o g)^(-1)(5)

Solusi

Verified

a. (f o g)^(-1)(x) = (2-3x)/(x-1), (g o f)^(-1)(x) = 1/(4-x), (f o f)^(-1)(x) = (x-1)/x, (g o g)^(-1)(x) = x-6. b. (f o g)(5) = 7/8, (g o f)^(-1)(5) = -1, (f o f)^(-1)(5) = 4/5, (g o g)^(-1)(5) = -1.

Pembahasan

a. Menentukan invers dari komposisi fungsi: 1. **(f o g)(x):** (f o g)(x) = f(g(x)) = f(x+3) = ((x+3)-1)/(x+3) = (x+2)/(x+3) Untuk mencari inversnya, misalkan y = (x+2)/(x+3). y(x+3) = x+2 xy + 3y = x+2 xy - x = 2 - 3y x(y-1) = 2 - 3y x = (2 - 3y) / (y-1) Jadi, (f o g)^(-1)(x) = (2 - 3x) / (x-1) 2. **(g o f)(x):** (g o f)(x) = g(f(x)) = g((x-1)/x) = ((x-1)/x) + 3 = (x-1 + 3x)/x = (4x-1)/x Untuk mencari inversnya, misalkan y = (4x-1)/x. xy = 4x - 1 xy - 4x = -1 x(y-4) = -1 x = -1 / (y-4) = 1 / (4-y) Jadi, (g o f)^(-1)(x) = 1 / (4-x) 3. **(f o f)(x):** (f o f)(x) = f(f(x)) = f((x-1)/x) = (((x-1)/x) - 1) / ((x-1)/x) = ((x-1 - x)/x) / ((x-1)/x) = (-1/x) / ((x-1)/x) = -1 / (x-1) Untuk mencari inversnya, misalkan y = -1 / (x-1). y(x-1) = -1 xy - y = -1 xy = y - 1 x = (y-1)/y Jadi, (f o f)^(-1)(x) = (x-1)/x 4. **(g o g)(x):** (g o g)(x) = g(g(x)) = g(x+3) = (x+3) + 3 = x+6 Untuk mencari inversnya, misalkan y = x+6. x = y-6 Jadi, (g o g)^(-1)(x) = x-6 b. Menghitung nilai fungsi komposisi dan inversnya: 1. **(f o g)(5):** (f o g)(5) = (5+2)/(5+3) = 7/8 2. **(g o f)^(-1)(5):** (g o f)^(-1)(5) = 1 / (4-5) = 1 / (-1) = -1 3. **(f o f)^(-1)(5):** (f o f)^(-1)(5) = (5-1)/5 = 4/5 4. **(g o g)^(-1)(5):** (g o g)^(-1)(5) = 5 - 6 = -1
Topik: Fungsi Komposisi, Fungsi Invers
Section: Operasi Pada Fungsi, Invers Fungsi

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...