Kelas 12Kelas 11Kelas 10mathAljabar
Himpunan penyelesaian dari sistem persamaan 2x+y-z=1,
Pertanyaan
Himpunan penyelesaian dari sistem persamaan 2x+y-z=1, x+y+z=6, dan x-2y+z=0 adalah ....
Solusi
Verified
Himpunan penyelesaiannya adalah {(1, 2, 3)}.
Pembahasan
Untuk menyelesaikan sistem persamaan linear tiga variabel: 1) 2x + y - z = 1 2) x + y + z = 6 3) x - 2y + z = 0 Kita dapat menggunakan metode eliminasi atau substitusi. Mari kita gunakan metode eliminasi: Langkah 1: Eliminasi z dari persamaan (1) dan (2). (2x + y - z) + (x + y + z) = 1 + 6 3x + 2y = 7 (Persamaan 4) Langkah 2: Eliminasi z dari persamaan (2) dan (3). (x + y + z) - (x - 2y + z) = 6 - 0 x + y + z - x + 2y - z = 6 3y = 6 y = 2 Langkah 3: Substitusikan nilai y = 2 ke Persamaan (4). 3x + 2(2) = 7 3x + 4 = 7 3x = 7 - 4 3x = 3 x = 1 Langkah 4: Substitusikan nilai x = 1 dan y = 2 ke salah satu persamaan awal (misalnya Persamaan 2) untuk mencari z. x + y + z = 6 1 + 2 + z = 6 3 + z = 6 z = 6 - 3 z = 3 Himpunan penyelesaian dari sistem persamaan tersebut adalah {(1, 2, 3)}.
Buka akses pembahasan jawaban
Topik: Sistem Persamaan Linear Tiga Variabel
Section: Substitusi, Eliminasi
Apakah jawaban ini membantu?