Command Palette

Search for a command to run...

Kelas 12Kelas 11mathKalkulus

Hitunglah hasil dari integral 2 4 akar(x^2-4)/x dx.

Pertanyaan

Hitunglah hasil dari integral \int_{2}^{4} \frac{\sqrt{x^2-4}}{x} dx.

Solusi

Verified

2\sqrt{3} - \frac{2\pi}{3}

Pembahasan

Untuk menghitung integral dari \int_{2}^{4} \frac{\sqrt{x^2-4}}{x} dx, kita dapat menggunakan substitusi trigonometri. Misalkan x = 2 sec \theta, maka dx = 2 sec \theta tan \theta d\theta. Ketika x = 2, 2 = 2 sec \theta => sec \theta = 1 => \theta = 0. Ketika x = 4, 4 = 2 sec \theta => sec \theta = 2 => \theta = \frac{\pi}{3}. Substitusi ke dalam integral: \int_{0}^{\frac{\pi}{3}} \frac{\sqrt{(2 \sec \theta)^2-4}}{2 \sec \theta} (2 \sec \theta \tan \theta) d\theta = \int_{0}^{\frac{\pi}{3}} \frac{\sqrt{4 \sec^2 \theta-4}}{2 \sec \theta} (2 \sec \theta \tan \theta) d\theta = \int_{0}^{\frac{\pi}{3}} \frac{\sqrt{4(\sec^2 \theta-1)}}{2 \sec \theta} (2 \sec \theta \tan \theta) d\theta = \int_{0}^{\frac{\pi}{3}} \frac{\sqrt{4 \tan^2 \theta}}{2 \sec \theta} (2 \sec \theta \tan \theta) d\theta = \int_{0}^{\frac{\pi}{3}} \frac{2 \tan \theta}{2 \sec \theta} (2 \sec \theta \tan \theta) d\theta = \int_{0}^{\frac{\pi}{3}} 2 \tan^2 \theta d\theta = 2 \int_{0}^{\frac{\pi}{3}} (\sec^2 \theta - 1) d\theta = 2 [\tan \theta - \theta]_{0}^{\frac{\pi}{3}} = 2 [(\tan \frac{\pi}{3} - \frac{\pi}{3}) - (\tan 0 - 0)] = 2 [(\sqrt{3} - \frac{\pi}{3}) - (0)] = 2\sqrt{3} - \frac{2\pi}{3}

Buka akses pembahasan jawaban

Topik: Integral
Section: Integral Substitusi Trigonometri

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...