Kelas 8Kelas 10Kelas 9mathAljabar
Samakan penyebut pecahan berikut. (xy^2 z) / (x^2 y z^3)
Pertanyaan
Samakan penyebut pecahan berikut: (xy^2 z) / (x^2 y z^3) dan 1/y^2.
Solusi
Verified
(x^2 y^3 z^3) / (x^2 y^2 z^3) dan (x^2 z^3) / (x^2 y^2 z^3)
Pembahasan
Untuk menyamakan penyebut dari pecahan (xy^2 z) / (x^2 y z^3) dan 1/y^2, kita perlu mencari Kelipatan Persekutuan Terkecil (KPK) dari penyebut-penyebutnya, yaitu x^2 y z^3 dan y^2. KPK dari x^2 y z^3 dan y^2 adalah x^2 y^2 z^3. Sekarang kita samakan kedua pecahan dengan penyebut x^2 y^2 z^3: Pecahan pertama: (xy^2 z) / (x^2 y z^3) Untuk mengubah penyebut menjadi x^2 y^2 z^3, kita perlu mengalikan dengan (x * y * z^2). Jadi, pembilang juga dikalikan dengan (x * y * z^2): (xy^2 z * x * y * z^2) / (x^2 y z^3 * x * y * z^2) = (x^2 y^3 z^3) / (x^2 y^2 z^3) Pecahan kedua: 1/y^2 Untuk mengubah penyebut menjadi x^2 y^2 z^3, kita perlu mengalikan dengan (x^2 * z^3). Jadi, pembilang juga dikalikan dengan (x^2 * z^3): (1 * x^2 * z^3) / (y^2 * x^2 * z^3) = (x^2 z^3) / (x^2 y^2 z^3) Jadi, pecahan-pecahan tersebut setelah disamakan penyebutnya menjadi (x^2 y^3 z^3) / (x^2 y^2 z^3) dan (x^2 z^3) / (x^2 y^2 z^3).
Buka akses pembahasan jawaban
Topik: Bentuk Aljabar
Section: Penyamaan Penyebut Pecahan Aljabar
Apakah jawaban ini membantu?