Sebuah industri sepatu membuat sepatu jenis A dan sepatu
Pertanyaan
Sebuah industri sepatu membuat sepatu jenis A dan sepatu jenis B. Kedua jenis sepatu tersebut dibuat menggunakan bahan kulit imitasi dan kanvas. Kulit imitasi yang diperlukan setiap pasang sepatu jenis A adalah 2 unit, sedangkan kulit imitasi yang diperlukan setiap pasang sepatu jenis B adalah 5 unit. Kanvas yang diperlukan setiap pasang sepatu jenis A adalah 3 unit, sedangkan kanvas yang diperlukan setiap pasang sepatu jenis B adalah 4 unit. Kulit imitasi yang tersedia hanya 380 unit. Kanvas yang tersedia hanya 360 unit. Tentukan: a. SPLDV yang menggambarkan permasalahan di atas; b. perkalian matriks yang menggambarkan permasalahan di atas; c. banyak sepatu jenis A yang dibuat.
Solusi
SPLDV: 2a + 5b = 380, 3a + 4b = 360. Matriks: [[2, 5], [3, 4]] * [[a], [b]] = [[380], [360]]. Banyak sepatu A = 40.
Pembahasan
Untuk membuat sepatu jenis A dan B, industri tersebut memerlukan bahan kulit imitasi dan kanvas. Sepatu A membutuhkan 2 unit kulit imitasi dan 3 unit kanvas per pasang. Sepatu B membutuhkan 5 unit kulit imitasi dan 4 unit kanvas per pasang. Ketersediaan kulit imitasi adalah 380 unit, dan kanvas adalah 360 unit. a. SPLDV (Sistem Persamaan Linear Dua Variabel): Misalkan jumlah sepatu jenis A adalah 'a' dan jumlah sepatu jenis B adalah 'b'. Persamaan dari ketersediaan kulit imitasi: 2a + 5b = 380 Persamaan dari ketersediaan kanvas: 3a + 4b = 360 b. Perkalian Matriks: Sistem persamaan di atas dapat ditulis dalam bentuk matriks: [[2, 5], [3, 4]] * [[a], [b]] = [[380], [360]] c. Banyak sepatu jenis A yang dibuat: Untuk mencari nilai 'a', kita bisa menggunakan metode eliminasi atau substitusi pada SPLDV: Dari persamaan 1: 2a + 5b = 380 => 8a + 20b = 1520 Dari persamaan 2: 3a + 4b = 360 => 15a + 20b = 1800 Kurangkan persamaan pertama dengan yang kedua: (8a + 20b) - (15a + 20b) = 1520 - 1800 -7a = -280 a = 40 Jadi, banyak sepatu jenis A yang dibuat adalah 40 pasang.