Kelas 10mathAljabar
Tentukan himpunan penyelesaian persamaan berikut ini. |2x +
Pertanyaan
Tentukan himpunan penyelesaian persamaan nilai mutlak berikut: $|2x + 1|=3-X$
Solusi
Verified
Himpunan penyelesaiannya adalah $\{2/3, -4\}$.
Pembahasan
Untuk menentukan himpunan penyelesaian dari persamaan nilai mutlak $|2x + 1| = 3 - X$, kita perlu mempertimbangkan dua kasus: Kasus 1: $2x + 1 = 3 - X$ $2x + x = 3 - 1$ $3x = 2$ $x = 2/3$ Untuk kasus ini, kita harus memeriksa apakah $3 - X \ge 0$, karena nilai mutlak tidak boleh negatif. Jika $x = 2/3$, maka $3 - 2/3 = 9/3 - 2/3 = 7/3$, yang mana $\ge 0$. Jadi, $x = 2/3$ adalah solusi yang valid. Kasus 2: $2x + 1 = -(3 - X)$ $2x + 1 = -3 + X$ $2x - x = -3 - 1$ $x = -4$ Untuk kasus ini, kita juga harus memeriksa apakah $3 - X \ge 0$. Jika $x = -4$, maka $3 - (-4) = 3 + 4 = 7$, yang mana $\ge 0$. Jadi, $x = -4$ adalah solusi yang valid. Himpunan penyelesaian dari persamaan $|2x + 1| = 3 - X$ adalah $\{2/3, -4\}$.
Buka akses pembahasan jawaban
Topik: Persamaan Nilai Mutlak
Section: Persamaan Nilai Mutlak Linear
Apakah jawaban ini membantu?