Kelas 11Kelas 10mathAljabar
Tentukan matriks koefisien dari sistem persamaan linear
Pertanyaan
Tentukan matriks koefisien dari sistem persamaan linear berikut: -2x+y-z=16, 4x-y+2z=12, x+2y-3z=-9.
Solusi
Verified
Matriks koefisiennya adalah [[-2, 1, -1], [4, -1, 2], [1, 2, -3]].
Pembahasan
Sistem persamaan linear yang diberikan adalah: -2x + y - z = 16 4x - y + 2z = 12 x + 2y - 3z = -9 Matriks koefisien dibentuk dari koefisien x, y, dan z dari setiap persamaan, disusun dalam baris yang sesuai dengan persamaannya. Baris 1 (dari persamaan -2x + y - z = 16): Koefisien x = -2, koefisien y = 1, koefisien z = -1 Baris 2 (dari persamaan 4x - y + 2z = 12): Koefisien x = 4, koefisien y = -1, koefisien z = 2 Baris 3 (dari persamaan x + 2y - 3z = -9): Koefisien x = 1, koefisien y = 2, koefisien z = -3 Jadi, matriks koefisiennya adalah: [ -2 1 -1 ] [ 4 -1 2 ] [ 1 2 -3 ] Jawaban Ringkas: [ -2 1 -1 ] [ 4 -1 2 ] [ 1 2 -3 ]
Buka akses pembahasan jawaban
Topik: Sistem Persamaan Linear
Section: Matriks Koefisien
Apakah jawaban ini membantu?