Command Palette

Search for a command to run...

Kelas 12Kelas 11Kelas 10mathAljabar

Jika p=(x^(4/3)+x^(1/3))(x^(-1/6)-x^(-2/3)) dan

Pertanyaan

Jika p=(x^(4/3)+x^(1/3))(x^(-1/6)-x^(-2/3)) dan q=(x^(2/3)+x^(-1/3))(x^(7/6)-x^(2/3)), maka nilai p/q= ....

Solusi

Verified

x^(-2/3) * (x^(1/2) - 1) / (x^(5/6) - 1)

Pembahasan

Untuk menyelesaikan soal ini, kita perlu menyederhanakan ekspresi p dan q terlebih dahulu, kemudian mencari nilai p/q. p = (x^(4/3) + x^(1/3))(x^(-1/6) - x^(-2/3)) Kita bisa memfaktorkan x^(1/3) dari suku pertama dan x^(-2/3) dari suku kedua: p = x^(1/3) * (x + 1) * x^(-2/3) * (x^(3/6) - 1) p = x^(1/3 - 2/3) * (x + 1) * (x^(1/2) - 1) p = x^(-1/3) * (x + 1) * (x^(1/2) - 1) q = (x^(2/3) + x^(-1/3))(x^(7/6) - x^(2/3)) Kita bisa memfaktorkan x^(-1/3) dari suku pertama dan x^(2/3) dari suku kedua: q = x^(-1/3) * (x + 1) * x^(2/3) * (x^(5/6) - 1) q = x^(-1/3 + 2/3) * (x + 1) * (x^(5/6) - 1) q = x^(1/3) * (x + 1) * (x^(5/6) - 1) Sekarang kita hitung p/q: p/q = [x^(-1/3) * (x + 1) * (x^(1/2) - 1)] / [x^(1/3) * (x + 1) * (x^(5/6) - 1)] p/q = x^(-1/3 - 1/3) * (x^(1/2) - 1) / (x^(5/6) - 1) p/q = x^(-2/3) * (x^(1/2) - 1) / (x^(5/6) - 1) Nilai p/q = x^(-2/3) * (x^(1/2) - 1) / (x^(5/6) - 1).
Topik: Operasi Pada Bentuk Pangkat Dan Akar
Section: Penyederhanaan Ekspresi Aljabar

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...