Command Palette

Search for a command to run...

Kelas 12Kelas 11mathAljabar Linear

Diketahui matriks A=(7 1 -1 -2); B=(-2 -8 2k+1 5); C=(3 7 2

Pertanyaan

Diketahui matriks $A = \begin{pmatrix} 7 & 1 \\ -1 & -2 \end{pmatrix}$, $B = \begin{pmatrix} -2 & -8 \\ 2k+1 & 5 \end{pmatrix}$, $C = \begin{pmatrix} 3 & 7 \\ 2 & 5 \end{pmatrix}$. Jika $A+B = C^{-1}$, maka nilai k adalah ....

Solusi

Verified

Nilai k adalah -1.

Pembahasan

Diketahui matriks $A = \begin{pmatrix} 7 & 1 \\ -1 & -2 \end{pmatrix}$, $B = \begin{pmatrix} -2 & -8 \\ 2k+1 & 5 \end{pmatrix}$, dan $C = \begin{pmatrix} 3 & 7 \\ 2 & 5 \end{pmatrix}$. Kita diberikan persamaan $A+B=C^{-1}$. Pertama, kita hitung $A+B$: $$ A+B = \begin{pmatrix} 7 & 1 \\ -1 & -2 \end{pmatrix} + \begin{pmatrix} -2 & -8 \\ 2k+1 & 5 \end{pmatrix} $$ $$ A+B = \begin{pmatrix} 7+(-2) & 1+(-8) \\ -1+(2k+1) & -2+5 \end{pmatrix} $$ $$ A+B = \begin{pmatrix} 5 & -7 \\ 2k & 3 \end{pmatrix} $$ Selanjutnya, kita hitung invers dari matriks C, yaitu $C^{-1}$. Rumus invers matriks 2x2 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ adalah $\frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$. Untuk matriks C, $a=3$, $b=7$, $c=2$, $d=5$. Determinan C ($ad-bc$) = $(3)(5) - (7)(2) = 15 - 14 = 1$. Maka, $C^{-1}$ adalah: $$ C^{-1} = \frac{1}{1} \begin{pmatrix} 5 & -7 \\ -2 & 3 \end{pmatrix} = \begin{pmatrix} 5 & -7 \\ -2 & 3 \end{pmatrix} $$ Sekarang kita samakan $A+B$ dengan $C^{-1}$: $$ \begin{pmatrix} 5 & -7 \\ 2k & 3 \end{pmatrix} = \begin{pmatrix} 5 & -7 \\ -2 & 3 \end{pmatrix} $$ Dengan menyamakan elemen-elemen matriks yang bersesuaian, kita dapatkan: Elemen baris 1, kolom 1: $5 = 5$ (sesuai) Elemen baris 1, kolom 2: $-7 = -7$ (sesuai) Elemen baris 2, kolom 1: $2k = -2$ Elemen baris 2, kolom 2: $3 = 3$ (sesuai) Dari elemen baris 2, kolom 1, kita dapat menyelesaikan untuk k: $2k = -2$ $k = \frac{-2}{2}$ $k = -1$ Jadi, nilai k adalah -1.

Buka akses pembahasan jawaban

Topik: Matriks
Section: Operasi Matriks, Invers Matriks

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...