Kelas 12mathMatriks
Tentukan invers dari matriks P=[-3 2 -2 1 0 1 1 -3 0].
Pertanyaan
Tentukan invers dari matriks P = [[-3, 2, -2], [1, 0, 1], [1, -3, 0]].
Solusi
Verified
Invers matriks P adalah [[-3, -6, -2], [-1, -2, -1], [3, 7, 2]].
Pembahasan
Untuk menentukan invers dari matriks P = [[-3, 2, -2], [1, 0, 1], [1, -3, 0]], kita perlu mengikuti langkah-langkah berikut: 1. **Hitung Determinan Matriks (det(P))**: det(P) = -3 * ( (0*0) - (1*-3) ) - 2 * ( (1*0) - (1*1) ) + (-2) * ( (1*-3) - (0*1) ) det(P) = -3 * (0 - (-3)) - 2 * (0 - 1) + (-2) * (-3 - 0) det(P) = -3 * (3) - 2 * (-1) + (-2) * (-3) det(P) = -9 + 2 + 6 det(P) = -1 2. **Cari Matriks Adjoin (adj(P))**: Matriks Adjoin diperoleh dari transpose matriks kofaktor. **a. Hitung Matriks Minor**: M11 = | 0 1 | = 0*0 - 1*(-3) = 3 | -3 0 | M12 = | 1 1 | = 1*0 - 1*1 = -1 | 1 0 | M13 = | 1 0 | = 1*(-3) - 0*1 = -3 | 1 -3 | M21 = | 2 -2 | = 2*0 - (-2)*(-3) = -6 | -3 0 | M22 = |-3 -2 | = -3*0 - (-2)*1 = 2 | 1 0 | M23 = |-3 2 | = -3*(-3) - 2*1 = 9 - 2 = 7 | 1 -3 | M31 = | 2 -2 | = 2*1 - (-2)*0 = 2 | 0 1 | M32 = |-3 -2 | = -3*1 - (-2)*1 = -3 + 2 = -1 | 1 1 | M33 = |-3 2 | = -3*0 - 2*1 = -2 | 1 0 | **b. Hitung Matriks Kofaktor (C)**: C11 = +M11 = 3 C12 = -M12 = -(-1) = 1 C13 = +M13 = -3 C21 = -M21 = -(-6) = 6 C22 = +M22 = 2 C23 = -M23 = -7 C31 = +M31 = 2 C32 = -M32 = -(-1) = 1 C33 = +M33 = -2 Matriks Kofaktor C = [[3, 1, -3], [6, 2, -7], [2, 1, -2]] **c. Transpose Matriks Kofaktor untuk mendapatkan Adjoin (adj(P))**: adj(P) = C^T = [[3, 6, 2], [1, 2, 1], [-3, -7, -2]] 3. **Hitung Invers Matriks (P^-1)**: P^-1 = (1 / det(P)) * adj(P) P^-1 = (1 / -1) * [[3, 6, 2], [1, 2, 1], [-3, -7, -2]] P^-1 = -1 * [[3, 6, 2], [1, 2, 1], [-3, -7, -2]] P^-1 = [[-3, -6, -2], [-1, -2, -1], [3, 7, 2]] Jadi, invers dari matriks P adalah [[-3, -6, -2], [-1, -2, -1], [3, 7, 2]].
Buka akses pembahasan jawaban
Topik: Invers Matriks
Section: Menghitung Invers Matriks 3X3
Apakah jawaban ini membantu?