Command Palette

Search for a command to run...

Kelas SmamathBarisan Dan Deret

UTBK 2020/MTK SOSHUMJika hasil bagi suku ke-7 oleh suku

Pertanyaan

UTBK 2020/MTK SOSHUM Jika hasil bagi suku ke-7 oleh suku ke-2 suatu barisan geometri adalah 32 dan jumlah tiga suku pertamanya adalah 35, maka hasil penjumlahan suku ke-2 dan suku ke-3 barisan tersebut adalah...

Solusi

Verified

30

Pembahasan

Misalkan barisan geometri tersebut adalah $a, ar, ar^2, dots$, dengan suku pertama $a$ dan rasio $r$. Diketahui hasil bagi suku ke-7 oleh suku ke-2 adalah 32: $ \frac{ar^{7-1}}{ar^{2-1}} = 32 \frac{ar^6}{ar} = 32 r^5 = 32 r = 2 $ Jumlah tiga suku pertamanya adalah 35: $ a + ar + ar^2 = 35 a(1 + r + r^2) = 35 $ Karena $r=2$, substitusikan nilai $r$ ke dalam persamaan: $ a(1 + 2 + 2^2) = 35 a(1 + 2 + 4) = 35 a(7) = 35 a = 5 $ Ditanya hasil penjumlahan suku ke-2 dan suku ke-3: Suku ke-2 = $ar = 5 imes 2 = 10$ Suku ke-3 = $ar^2 = 5 imes 2^2 = 5 imes 4 = 20$ Jumlah suku ke-2 dan suku ke-3 = $10 + 20 = 30$. Jadi, hasil penjumlahan suku ke-2 dan suku ke-3 barisan tersebut adalah 30.

Buka akses pembahasan jawaban

Topik: Barisan Geometri
Section: Sifat Sifat Barisan Geometri

Apakah jawaban ini membantu?

On This Page

Loading Related Questions...